
SDMay19-39: Iseage Traffic
Generator

Dustin Ryan-Roepsch, Matthew Vanderwerf, Josh Wallin, Ethan Williams

 Background
The cyber defense competition allows students studying
security to practice their skill.

Blue Team - Students who have set up services (e.g.
web servers) that they need to keep running and protect.

Green Team - Volunteers who verify status of services

Red Team - Penetration testers who attempt to disrupt/
gain access to the servers controlled by the Blue team

ISEAGE - Internet-Scale Event and Attack
Generation Environment, internet simulation

Problem Statement
Our project addresses two problems:

1. The green team checks the status of the blue teams servers at regular
intervals. Outside these times, the blue team can assume that any traffic they
receive is malicious traffic. This enables strategies for the blue team that
wouldn’t be feasible in a realistic scenario, like blanket IP banning.

2. In a classroom setting, a professor attempting to teach important software like
intrusion detection systems or firewalls doesn’t have realistic malicious traffic
to let the students play with.

Requirements
High-Level Requirements

R1. The system shall obscure the Red and Green teams’ traffic, to limit the effectiveness of blanket IP
banning.

R2. The system shall produce useful traffic for a classroom setting, such as to trigger responses from
Intrusion Detection Systems (IDS).

R3. Each type of traffic shall be configurable such that, for example, a task that will perform an ssh
attack should be able to be run with different password lists.

Low-Level Requirements

R4. The traffic generator shall accept a list of target IP addresses.
R5. The traffic generator shall be reconfigurable with respect to the attack/traffic types.
R6. The traffic generator shall be reconfigurable without requiring a restart.
R7. The traffic generator shall accept a configuration file.
R8. The traffic generator shall consist of a task producer and a group of task consumers.
R9. The traffic generator shall appropriately rewrite source addresses to obfuscate packet origins.1

R10. The traffic generator shall produce both normal (i.e., non-attack) traffic and attack traffic.
R11. The producer node of the traffic generator shall execute on a virtual machine within the ISEAGE

network.
R12. The consumer nodes shall execute within Docker containers housed on the ISEAGE network.

Non-functional requirements

R1. The design shall scale to support a full cyber defense competition.
R2. All software libraries employed shall be licensed such that their use is

permitted in both a classroom and competition setting.
R3. The design and implementation shall follow all relevant and reasonable

standards, as encountered during their elaboration.
R4. The product shall be sufficiently secured such that the client can reasonably

assume outside parties will not have access to critical system settings

Design Diagram

Design
Producer/Consumer Architecture

User Interface- Producer will read from configuration file to build network tasks

Inserts tasks into queue for particular target

Consumer for corresponding target continually reads from queue and executes
task, rewriting the source address beforehand

The ISEAGE environment communicates responses back to the appropriate
consumer despite altered source addresses

Design Analysis
Strengths:

● Efficient
● Scalable
● Simple source rewriting
● Easy test automation

Weaknesses:

● Too many targets could be a stress on system resources
● Not set up to receive return traffic
● Lacks complex traffic types

Implementation Diagram

Software Used
Docker- Our containerization technology
which makes it easy to develop and pass off
to ISEAGE

RabbitMQ- Our task runner which will
contain tasks built by the producer and
executed by a consumer to send the traffic
to the target

Python- Used for the producer and
consumer implementations as well as task
and configuration objects

Software Used (cont.)

WGET- Tool installed to consumer containers to
facilitate HTTP traffic generation

SNORT- IDS with database containing
specification of malicious packets

SSH- An attack type which will try a list of
commonly used passwords against the target
machine and executed using a Python library.

Technical Challenges
● Source address rewriting went through several iterations before it worked.
● Getting the ISEAGE environment set up initially posed to be harder than we

thought, we spent time setting up the environment on ESXI machines from
scratch but ended up using a prebuilt solution provided by our client

● Docker wasn’t as “drop in” as we expected for the ISEAGE environment - we
spent a lot of time developing outside of the ISEAGE environment because
we didn’t have one setup, banking on docker running the same everywhere.

● A docker-compose configuration file is used to spin up containers for the following
testing dependencies:
● Apache (HTTP Request Testing)
● Ubuntu (SSH Protocol Testing)
● Snort (Malicious Packet Detection Testing)

● Environmental variables are inherited from the machine that the containers are spun
up on
● Enables more simplified local and integration testing
● Important ISEAGE variables such as $HTTP_PROXY, $HTTPS_PROXY can be

inherited automatically
● Failure to have these variables in ISEAGE would result in no internet

connectivity (outside ISEAGE)

Testing/Evaluation

Testing/Evaluation (cont.)

● Test Cases
● WGET tests iterating over a list of URLs, requests sent to Apache container

● Successful if it receives 200 OK responses
● SSH tests iterating over a dictionary of username/passwords, pointed at Ubuntu

container
● Successful if appropriate username/passwords successfully establish a secure

shell
● Common malicious packet generation

● Successful if Snort container detects the malicious packets

Project Schedule

Risks & Mitigation Techniques
This tool could be used as an easily scalable botnet that could be deployed on the
open internet against any targets

Considering this, we limited the exposure of the tool’s development by:

● Developing in a private repository on Iowa State’s network
● Testing locally and in the ISEAGE environment
● Handing off all the code to the ISEAGE team whose source code is already

private

Conclusion
We have several deliverables for our project including

● Configurable tool for sending web traffic to multiple targets
● Rewritable source addresses to obfuscate traffic source
● WGET, SNORT, and SSH traffic types
● Dockerized build for easy scalability and testing
● Virtual Machine to be loaded into ISEAGE environment

Future Work
● Getting return traffic into the tool considering modified source addresses
● Adding more traffic types to more accurately reflect the real internet
● Making the scheduling configuration more robust
● Adding scheduling presets for different use cases
● Automatic deployment to the competition network
● Documentation for how each of the technologies work within the tool

